
* To whom correspondence should be addressed

© Springer-Verlag 1996

J. Mol. Model. 1996, 2, 293 – 299

Elastic Properties of Polymer Networks

Ralf Everaers*  and Kurt Kremer †

Institut für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-52425 Jülich, Germany

present address: Institut Charles Sadron, 6, rue Boussingault, F-67083 Strasbourg, France (ever@ics.crm.u-strasbg.fr)

† Max-Planck Institut für Polymerforschung, Postfach 3148, D-55021 Mainz, Germany

Received: 15 May 1996 / Accepted: 6 August 1996 / Published: 27 September 1996

Abstract

Many fundamental questions for the understanding of polymer melts and networks are more suitably addressed
by current computer simulations than by experiments. The reason is that simulations have simultaneous access
to the microscopic structure and the macroscopic behavior of well-defined model systems. The coarse-grained
models used often bear little relation to actual chemical species. This is justified by the experimentally estab-
lished universality of polymer dynamics and no limitation for the test and development of theories which are
directed at these universal aspects. The difficulties already encountered on this level will be illustrated for
entanglements between polymers which dominate the dynamic in dense systems.
For practical purposes it would, of coarse, be desirable to predict the characteristic length and time scales of
experimental systems from the chemical structure of the polymer chains. Due to the extremely long relaxation
times it is impossible to achieve this in brute-force simulations of truely microscopic models. Systematic coarse-
graining combined with a better theoretical understanding seem to offer a practical alternative.
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Introduction

Polymer networks are the basic structural element of sys-
tems as different  as tire rubber and gels. They are not only
technically important but also commonly found in biologi-
cal  systems such as the cytoskeleton. Networks of flexible
macromolecules display an elastic and thermoelastic behav-
iour quite different from ordinary solids. [1] Crystals, met-
als, ceramics, or glasses can be stretched only minimally.
Small deformations of the sample extend down to atomic
scales and lead to an increase of the internal energy. Rubber-
like materials reversibly sustain elongations of up to 1000%
with small strain elastic moduli that are four or five orders of

magnitude smaller than for other solids.  Most importantly,
the tension induced by a deformation is almost exclusively
due to a decrease in entropy. As a consequence, the underly-
ing  mechanism has to be different from the case of conven-
tional  solids.

The key problem in the theory of rubber elasticity is the
correct identification of the microscopic sources of this en-
tropy change.  An at least qualitative explanation was found
in the 1930, when it was realized that rubber is the result of
cross linking a melt of long flexible chain molecules. Such
polymers adopt random coil conformations and behave as
entropic springs. The classical theories of rubber elasticity [1]
estimate the elastic properties of a polymer network from
the elongation of the network strands. This explanation ne-
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Figure 1. Network of bead-spring polymer chains with the
connectivity of a diamond lattice. The typical extension of
the network strands corresponds to that of free chains in a
melt. The “loose” monomers are due to the representation
using periodic boundary conditions.

glects the mutual impenetrability of the chains, although it is
the reason for the viscoelastic properties of  un-cross-linked
polymer melts. [2] The well-known “magic putty” jumps,
when formed accordingly, like an ordinary elastic ball. Left
to rest on a table, it flows like thick honey. The difference
between the two situations lies in the typical time scale over
which the force acts on the material. This behavior is univer-
sal in the sense that beyond a chemisty-dependent minimal
chain length all polymers follow the same laws.

A simple microscopic explanation of these laws is pro-
vided by the tube model [2]. Entanglements with other mol-
ecules restrict each polymer to a one-dimensional diffusion
along its own coarse-grained contour (reptation). The tube is
permanently reformed at its ends. To relax the tension in a
sheared melt the chains have to reptate out of their original
tubes. On shorter time scales the melt displays rubber elas-
ticity with a time and chain length independent modulus; on
larger times scales the melt flows like a viscous fluid with a
viscosity that increases by a factor of ten when the chain
length is doubled. On the whole the tube model is in good
agreement with experiments. What is lacking, however, is
an understanding of the relation between the parameters of
the tube model and the chemical structure of the polymers.
Considering how much energy is required in order to pump
and to stir intermediate and final products in synthetics pro-
duction the need for a microscopic understanding of entan-

glement effects becomes obvious. Here the investigation of
polymer networks offers a couple of advantages. Cross-linked
chains are subject to the same, in their nature topological
constraints as chains in a melt without having the possiblity
to free themselves by reptation. Furthermore, from a math-
ematical point of view entanglements are only rigerously
defined between closed curves like the meshes of a network.
Remarkably enough, there is no definite experimental an-
swer to the question, if  and how much entanglement effects
contribute to the elasticity of polymer networks.

One reason are the great difficulties in the chemical
prepartion and characterisation of model networks.  A ran-
domly cross-linked melt of linear polymers has a highly ir-
regular connectivity. Typical defects are  polydispersity, dan-
gling ends and clusters, and self loops. These imperfections
are present to some degree in all experimental system and a
serious complication in a study of the consequences of to-
pology conservation. The second reason is that although it is
comparatively simple to measure the macroscopic properities
such as the shear modulus, experiments provide little micro-
scopic information.

Computer simulations  offer a couple of important ad-
vantages over experiments [3]. We mention the greater free-
dom in and control over the  formation of the networks, the
access to the microscopic structure and dynamics, or the pos-
sible realization of Gedankenexperiments such as the com-
parison of otherwise identical systems with and without to-
pology conservation. The key, however, to the optimal use of
the information available in a computer  simulation is the
simultaneous determination of macroscopic quantities.  Un-
fortunately, it is particularly complicated to determine in a
simulation what is easily accessible in  experiments: the mac-
roscopic elastic properties. The long relaxation times require
corresponding computer resources, so that the present
simulations were the first in which shear moduli could be
measured reliably by investigating  strained samples.  Since
we also have complete access to the microscopic structure
and dynamics in both, the strained and the unstrained state,
we are in a unique position to test statistical mechanical theo-
ries of rubber elasticity without invoking adjustable param-
eters.

Simulations of model networks

In this paper we summarize results of molecular dynamics
simulations of model polymer networks with diamond lat-
tice connectivity, where we have exploited all of the advan-
tages mentioned above.  Such systems, which cannot be pre-
pared experimentally, are free of “chemical” defects in the
network structure. Thus,  the effect of physical knots and
entanglements is isolated from other sources of quenched
disorder.

The individual diamond networks are spanned across the
simulation volume via periodic boundary conditions.  We
have chosen an average distance between connected
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Figure 2. Stress relaxation (inset) and stress-strain curvs for
diamond networks in  the common representation σ(λ) versus
λ2 – λ–1: N=44 (r), N=26 (+), (N=12) (◊). The shear modulus
is given by the slope.

crosslinks equal to the root mean square end–to–end distance
of the corresponding chains in a melt. The density of a single
diamond net decreases with the strand length. To reach melt
density we place several of these structures in the simulation
box  and  work with interpenetrating diamond networks
(IPDN). On the length scale of the network strands the struc-
ture is similar to experimental systems, which are also lo-
cally interpenetrating with nearest neighbor  crosslinks that
are not connected by a network strand.

We follow two distinct strategies to isolate the entangle-
ment effects. One is to calculate quenched averages for oth-
erwise identical systems with different topology. In our
simulations of randomly and of regularly IPDN we employ
interaction potentials which ensure the mutual impenetrabil-
ity of the chains, thereby preserving the topological state from
the end of the preparation process.  The second strategy is to
calculate annealed averages over different topologies. This
can either be achieved trivially by  simulating non-interact-
ing phantom chains or by using interaction potentials  that
allow chains to cut through each other but nevertheless pre-
serve the monomer packing of the melt. The structure of the
chains is almost identical for all systems and by comparing
their behaviour we can directly access the effects of the topo-
logical constraints.

As already explained chemial details are not important
for the understanding of the universal aspects of rubber elas-
ticity, even though they are, of course, crucial when it comes
to preparing experimental systems with as few defects as
possible.  For our simulations we used the same coarse-grained
model as in earlier investigations of polymer melts and net-
works [4, 5, 6]. The network strands were modeled as freely

jointed bead spring chains of uniform length N.  They were
crosslinked by four-functional monomers  into networks with
the connectivity of a diamond lattice. There were two types
of interactions, an excluded volume interaction, ULJ, between
all monomers and a bond potential, UFENE, between chemi-
cal nearest neighbors. With ε, σ and τ as the Lennard-Jones
units of energy, length and time we worked at a temperature
kBT = 1ε and at a density ρ=0.85 σ–3. The average bond length
was l = 0.97 σ and  topology was conserved.  The relevant
length and time scales for chains in a melt are the mean-
square end–to–end distance <R2> (N) ≈ 1.7 l2 N, the melt
entanglement length Ne ≈ 35 monomers and the Rouse time
τRouse ≈ 1.5 N2 τ [4]. We carried out molecular dynamics
simulations, where the system was weakly coupled to a heat
bath. The same samples were simulated first in the unstrained
state and subsequently elongated by typically 50%. Defor-
mations were implemented as a short sequence of small step
changes at the beginning of the runs. We measured the pres-

sure tensor, $P , and watched the relaxation of the normal
tension σ = Pxx – ½ ( Pyy + Pzz) to a plateau value (inset in
Figure 2). The stress relaxation was completed after a period
of about 2τRouse compared to our overall simulation times of
the order of 10τRouse. For our largest systems this is equiva-
lent to 8·1010 particle updates.  Data from the initial relaxa-
tion period was discarded for the analysis of conformational
properties.

By varying the interaction potentials we can investigate
systems which differ only in the mutual penetrability of the
chains. The simplest example are “phantom” networks, in
which the excluded volume interaction is switched off ex-

Figure 3. End-to-end distance distribution of the network
strands for N=44 in the un-strained (r) and strained state
(|| ◊ and ⊥ ∆, λ = 1.5). For comparison: data for phantom
networks (*). Distances are measured in units of the lattice
constant x

1
 of the diamond lattice.
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(N+1/2). Macroscopically our systems behave as ideal  rub-
ber with a purely entropic elasticity and  exhibit the classical
stress-strain relation  (Figure 2). The measured shear moduli
G for systems with  conserved random topology are between
50% (N=12) to 100% (N=44) larger than in the other  cases
[7].

The classical theories of rubber elasticity

The most important step to an understanding of rubber elas-
ticity is the examination of the typical conformations of a
polymer chain in a melt [1]. Independent of their chemical
structure all chain molecules adopt random coil conforma-
tions on large length scales.  Important with regard to the
elastic properties  is that for a random coil those conforma-
tions are the most probable in which the chain ends are close
together. An external force pulling the chain ends apart there-
fore forces the polymer to adopt a less probable conforma-
tion. The internal energies,  on the other hand, remain prac-
tically unchanged as long as  the polymer is not stretched
completely. It is the loss of entropy which is responsible for
the restoring  forces. The force-elongation relation corre-
sponds to that of a linear spring.

The classical theories calculate the elastic properties by
treating the network strands as independent entropic springs
and estimating their elongation under deformations of the
sample. The predicted shear moduli are of the order of kBT
times ρstrand, the density of elastically active  network strands.
Remarkably enough, the result (including the prefactors) is
completely independent of the chemical structure of the poly-
mers. It is, however, far from obvious that the chains may be
treated as independent. The reason is the mutual impenetra-
bility of  the polymers which severely restricts the confor-
mations accessible to individual network strands. In spite of
weighty theoretical arguments [9, 10]  the importance of en-
tanglements for the elasticity of polymer networks has been
disputed for decades, not least because the stress-strain rela-
tions of most experimental systems fit the predictions of the
classical theories.

Test of the classical theories

The state of a network of (entropic) springs is most conven-
iently characterized by distribution functions p(x), p(y) and
p(z) for the Cartesian components of the spring end-to-end
vectors (Figure 3).   For the original unstrained state the dis-
tribution functions are identical for phantom networks and
randomly IPDN and can be calculated analytically. The mean
elongation is given by the bond lengths of the diamond lat-
tice r1. The actual end-to-end distances fluctuate around cor-
responding values, so that p(x) etc. are given by a
superposition of two Gaussian centered at ±x1.

Figure 3 illustrates the changes in the spring elongations
after a deformation of the sample.  While they increase par-

cept for nearest and next-nearest neighbors along the chains.
Different strands of the network can now freely penetrate
each other. What is important to note, is that the structure of
the chains (and in particular  < R2 >) is almost identical to
the original case. This is, on the one hand, useful for the
preparation of relaxed initial conformations. More impor-
tantly and in contrast to experiments,  the comparison allows
to  quantify the effect of topology conservation on the elastic
properties of polymer networks.

Simulations of regularly IPDN start from intercalating
conformations of strongly swollen networks with completely
stretched strands. In MD runs the conformations are slowly
compressed to melt density. The important point is that the
topology conserving LJ interaction between all monomers is
used right from the beginning.

The preparation of the initial conformations for the ran-
domly IPDN  is illustrated in the first video sequence. The
networks are set up at melt density.  Between the crosslinks
on the diamond lattice sites we place phantom chains gener-
ated in Monte Carlo simulations with the proper end-to-end
distance. After the relaxation of the lattice structure in MD
runs for phantom chains, we  introduce the repulsive excluded
volume interaction between the monomers. This is done by
slowly building up a cosine potential up to a point where the
monomer distances are large enough for the LJ potential.
From that point onwards the random topology is quenched
and the random entanglements between meshes of the differ-
ent networks become permanent.

We have investigated systems with strand lengths
N = 12,26,44 corresponding to n=5,7,9 independent, but mu-
tually interpenetrating diamond networks. The total number
of particles ranged from  8000 and to 51264 monomers. The
density of elastically active strands is given by ρstrand = ρ/
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Figure 4. Strand length dependence of the shear modulus
normalized to the phantom model prediction G

ph
.  The filled

symbols represent the measured values G/G
ph

 and the open
symbols indicate the  classical prediction G

class
/G

ph
. G

aff
/G

ph

= 3/2 is the upper limit for any classical theory.



J. Mol. Model. 1996, 2 297

Figure 5. Conformation of strained
randomly interpenetrating diamond
networks (λ=3.2). In the non-linear
regime there are a few highly stretched
paths (marked by thick radii and in
red) where a large fraction of the
induced tension is localized. The
apparant interruption of the chains is
due to the representation in periodic
boundary conditions.

allel to the elongation, they actually decrease in the perpen-
dicular directions.  The maxima change “affinly”  with the
outer dimensions of the sample: If the simulation box is
stretched by a factor of two in x-direction, the same holds for
the x-component of the mean elongation of the network
strands. At the same time the size of the simulation box as
well as the mean elongations in y- and z-direction are re-
duced by a factor of √2, so that the volume remains
unchanged.[a] This behavior is fulfilled almost exactly by
experimental systems. In our simulations the volume conser-
vation was enforced. Regarding the width of the distribu-
tions our results confirm the crossover from phantom to aff-
ine behavior with increasing chain length which has been
discussed in the framework of the most sophisticated classi-
cal theories [8]. Decisive, however, is the quantitative com-
parison of the classical moduli calculated from the change in
the elongation of the network strands with the measured
moduli. Figure 4 demonstrates that the true change in en-
tropy and accordingly the true modulus are by far higher
than the values one obtains within the  classical picture [7].
This result shows that a theory that aims to calculate the ef-
fects of topology conservation from limitations in  the cross-
link fluctuations is bound to overlook relevant contributions
to the total entropy change even if no further approximations
are being made. The discrepancy grows with increasing chain
length.

Entangled meshes

Explaining the discrepancy by  including the topological
constraints in a first principles statistical mechanical treat-
ment has proven extremely complicated [9, 10, 11, 12].
Progress is often due to the study of comparatively simple
models of the effects of the topological constraints. It is there-
fore of great importance to clarify, if a model captures the
relevant physics. Simulations can play an important role in
answering this question. As an example we refer the reader
to the classical theories discussed above. As we have shown,
it makes little sense to pursue this approach with ever more
sophisticated refinements.

The reason for the increase of the modulus due to topol-
ogy conservation can be illustrated by an analysis of the  stress
distribution in strongly stretched networks (see Figure 5 and
the second video sequence). Our simulations show that in
randomly IPDN with topology conservation a large part of
the tension is localized on  topologically shortest paths
through the system. These paths are composed of strands as
well as meshes with physical entanglements propagating the
tension in the same manner as chemical cross-links. The way
the chains fail to release a link is an artefact of our model. At
too large stresses the connected beads at the contact point
are driven so far apart that the chains can slip through each
other. Thus, in contrast to a real system, the chains do not
break in the process. Since the energy threshold is of the
order of 70 kBT such events do not occur at small elongations.
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a)

b)

c)

d)

Figure 6. a) Illustration of the index method for
characterizing links. b) Invariance of the linking number
under deformations. c) Trapped figure eight: a linked pair of
curves with I=0. d) Example from the simulation for two linked
meshes.

ematical problem and the subject of knot theorie, which deals
with classifying single (“knots”) and several (“links”) closed
curves embedded in three dimensional space. Usually the
classification starts from a projection of the curves onto a
plane.  The most important tool are topological invariants,
i.e. numbers or polynomials which retain their values for dif-
ferent projections as well as under  continuous deformations
of the curves which do not require opening and closing the
rings in between.  A topological invariant is the more suit-
able for the purpose of classification, the less frequent iden-
tical values are assigned to different knots or links, as they
are tubulated in extensive lists.

A simple example for the approximate characterization
of links is the Gauss linking number. It can be calculated by
a method where all crossing points of the two curves in a
projection are indexed by ± 1/2 (Figure 6).  The sign depends
on the direction into which the tangent vector of the upper
curve has to be rotated in order to coincide with the one of
the bridged curve. The linking number I is defined as the
sum of the indices and is a topological invariant. There are,
however, a few examples (Figure 6c) for linked curves with
linking number zero, so that the classification is not com-
pletely reliable.

For estimating the interaction between meshes of a net-
work the mathematical link tables are only of limited use.
On the one hand the classification is too detailed (it makes
little sense to distinguish between more complex entangle-
ments of two rings and to neglect interactions between three
or more rings). On the other hand the link tables provide no

The stress localization in diamond networks is completely
unexpected from the point of view of the classical theory,
since all network strands are equivalent. The highly arteficial
regularly IPDN mimick a situation where this equivalence is
preserved for a conserved topology. When these networks
are stretched, all strands contribute equally to the elastic re-
sponse. The high tensions we observed along a few paths
and at much lower elongations in the first case, occur now
homogeneously throughout the whole system when all strands
are stretched to their full contour length.

A similar analysis can be performed for swollen networks
(see the third video sequence).

For a single diamond network swelling reveals the regu-
lar connectivity, i.e. it leads to a state similarly to what is
shown in figure 1 but with stretched network strands. For
regularly IPDN the individual diamond "lattices" can move
against each other. In the case of randomly IPDN, however,
the entanglements lead to an aligment of the network strands
and the formation of pores.

Modeling the effects of topology conservation requires
two steps [9, 10]:  the characterization of the entanglements
and an estimate of their contribution to the restoring forces
resisting a deformation of the sample. The first part is a math-
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information on the likelihood of the occurence of particular
links for random walk-like ring polymers.

The simplest way to motivate an effective topological
interaction between ring polymers is based on a center of
mass distance-dependent linking  probability [13]. The argu-
ment is analoguos to the treatment of a polymer chain as
entropic spring. Since there are less conformations of two
linked rings with a large center of mass distance, the rings
behave as if connected by an entropic spring. By the same
rational there is an repulsive entropic interaction between
non-linked rings. In the framework of a network theory
Graessley and Pearson [14] treated entanglements between
meshes as additional entropic springs and predicted a contri-
bution proportional to the entanglement density ρent to the
modulus. The prefactor depends on the interaction law and
can be estimated from linking probabilities, which, in gen-
eral, are accessible only through computer simulations.

It is very difficult, if not impossible, to decide in experi-
ments, whether or not such an approach makes sense. In the
framework of our simulations we determined the degree of
linking for all mesh pairs in the system and estimated a to-
pology contribution to the modulus on the basis of the model
of Graessley and Pearson without invoking any adjustable
parameters. The comparision with the measured values was
suprisingly positive. We observed the predicted
proportionallity G – Gph = 0.85 kBT ρent, with a prefactor  of
the same order of magnitude as the estimate of 1.3 kBT [15].
In view of the substancial simplifications the agreement is
quite remarkable.

Summary

We presented the first simulations of model polymer net-
works in which shear moduli could be measured reliably by
investigating  strained samples. This enabled us to prove quan-
titatively that the classical  treatment of the network strands
as independent entropic springs omits important contribu-
tions to the total entropy change in deformed networks. The
reason is the quenching of the topology (e.g. the state of link-
ing of mesh pairs)  during the formation network. We have
estimated a topology contribution to the modulus in the frame-
work of a simple theory based on entropic interactions be-
tween loops. The agreement with the measured values con-
stitutes a small, but nevertheless quantitatively  controlled
step towards a topological theory of rubber elasticity. A great
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challenge for future work is the derivation of the  empiri-
cally very successful tube model from considerations based
on the topological character of the constraints. It is difficult
to imagine that the necessary information for a test of such a
theory could be obtained in experiments.  In our view, this
makes simulations an indispensible intermediate step in the
understanding of the viscoelasticity of polymeric materials.
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